If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying ln(y) = 3ln(x2 + 4) + ln(32) + -3ln(4) * equation Multiply ln * y lny = 3ln(x2 + 4) + ln(32) + -3ln(4) * equation Reorder the terms: lny = 3ln(4 + x2) + ln(32) + -3ln(4) * equation lny = (4 * 3ln + x2 * 3ln) + ln(32) + -3ln(4) * equation lny = (12ln + 3lnx2) + ln(32) + -3ln(4) * equation Reorder the terms for easier multiplication: lny = 12ln + 3lnx2 + 32ln + -3ln(4) * equation Reorder the terms for easier multiplication: lny = 12ln + 3lnx2 + 32ln + -3 * 4ln * aeinoqtu Multiply -3 * 4 lny = 12ln + 3lnx2 + 32ln + -12ln * aeinoqtu Multiply ln * aeinoqtu lny = 12ln + 3lnx2 + 32ln + -12aeiln2oqtu Reorder the terms: lny = -12aeiln2oqtu + 12ln + 32ln + 3lnx2 Combine like terms: 12ln + 32ln = 44ln lny = -12aeiln2oqtu + 44ln + 3lnx2 Solving lny = -12aeiln2oqtu + 44ln + 3lnx2 Solving for variable 'l'. Move all terms containing l to the left, all other terms to the right. Add '12aeiln2oqtu' to each side of the equation. 12aeiln2oqtu + lny = -12aeiln2oqtu + 44ln + 12aeiln2oqtu + 3lnx2 Reorder the terms: 12aeiln2oqtu + lny = -12aeiln2oqtu + 12aeiln2oqtu + 44ln + 3lnx2 Combine like terms: -12aeiln2oqtu + 12aeiln2oqtu = 0 12aeiln2oqtu + lny = 0 + 44ln + 3lnx2 12aeiln2oqtu + lny = 44ln + 3lnx2 Add '-44ln' to each side of the equation. 12aeiln2oqtu + -44ln + lny = 44ln + -44ln + 3lnx2 Combine like terms: 44ln + -44ln = 0 12aeiln2oqtu + -44ln + lny = 0 + 3lnx2 12aeiln2oqtu + -44ln + lny = 3lnx2 Add '-3lnx2' to each side of the equation. 12aeiln2oqtu + -44ln + -3lnx2 + lny = 3lnx2 + -3lnx2 Combine like terms: 3lnx2 + -3lnx2 = 0 12aeiln2oqtu + -44ln + -3lnx2 + lny = 0 Factor out the Greatest Common Factor (GCF), 'ln'. ln(12aeinoqtu + -44 + -3x2 + y) = 0Subproblem 1
Set the factor 'ln' equal to zero and attempt to solve: Simplifying ln = 0 Solving ln = 0 Move all terms containing l to the left, all other terms to the right. Simplifying ln = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(12aeinoqtu + -44 + -3x2 + y)' equal to zero and attempt to solve: Simplifying 12aeinoqtu + -44 + -3x2 + y = 0 Reorder the terms: -44 + 12aeinoqtu + -3x2 + y = 0 Solving -44 + 12aeinoqtu + -3x2 + y = 0 Move all terms containing l to the left, all other terms to the right. Add '44' to each side of the equation. -44 + 12aeinoqtu + -3x2 + 44 + y = 0 + 44 Reorder the terms: -44 + 44 + 12aeinoqtu + -3x2 + y = 0 + 44 Combine like terms: -44 + 44 = 0 0 + 12aeinoqtu + -3x2 + y = 0 + 44 12aeinoqtu + -3x2 + y = 0 + 44 Combine like terms: 0 + 44 = 44 12aeinoqtu + -3x2 + y = 44 Add '-12aeinoqtu' to each side of the equation. 12aeinoqtu + -3x2 + -12aeinoqtu + y = 44 + -12aeinoqtu Reorder the terms: 12aeinoqtu + -12aeinoqtu + -3x2 + y = 44 + -12aeinoqtu Combine like terms: 12aeinoqtu + -12aeinoqtu = 0 0 + -3x2 + y = 44 + -12aeinoqtu -3x2 + y = 44 + -12aeinoqtu Add '3x2' to each side of the equation. -3x2 + 3x2 + y = 44 + -12aeinoqtu + 3x2 Combine like terms: -3x2 + 3x2 = 0 0 + y = 44 + -12aeinoqtu + 3x2 y = 44 + -12aeinoqtu + 3x2 Add '-1y' to each side of the equation. y + -1y = 44 + -12aeinoqtu + 3x2 + -1y Combine like terms: y + -1y = 0 0 = 44 + -12aeinoqtu + 3x2 + -1y Simplifying 0 = 44 + -12aeinoqtu + 3x2 + -1y The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| lim0.5x/100-x | | 3t-5=-8(6t+5t) | | 2(y-2)=5(y+6)-13 | | x-y=58 | | 7q=28 | | 12-8z-16=7z+40-4z | | 4cos^2x-5cosx+1=0 | | 3(p-1)=5(p-1)-2(7-2p) | | 5y+35=-4y-10 | | p=44+x | | y/9-1=9 | | a=m+5 | | P=5x+8 | | 25z-1= | | 3a-x=a+2r | | P=3x+8 | | 3(x-1)+5(2x-3)=8x+7 | | 11-(S/8)=15 | | 23/4z=13/4 | | -7-5b=28 | | 87659187659387615987659837546594817615498756198157236=x^2 | | 2x-19=44+8x | | 83=3-22x+4x^2 | | 12x+2=2x-14 | | 14=3.8+w | | 83=3-22x | | 4x^2+28x-3x-21=98 | | 5x^2+19x-18=0 | | 8h-2=9+7h | | 1/4(s-4)=s-7 | | 4x(-10-6)=-88-8x | | 9x-2+3x=5+7x+11 |